当前位置: 澳门皇冠app > 科技技术 > 正文

二氧化碳高效电催化还原研究新进展,二氧化碳

时间:2019-10-05 10:01来源:科技技术
二氧化碳高效电催化还原研究取得进展 近日,中国科学技术大学合肥微尺度物质科学国家实验室和化学与材料科学学院教授曾杰课题组与杨金龙课题组展开合作,在理解表面应力效应对

二氧化碳高效电催化还原研究取得进展

近日,中国科学技术大学合肥微尺度物质科学国家实验室和化学与材料科学学院教授曾杰课题组与杨金龙课题组展开合作,在理解表面应力效应对CO2电催化还原反应的调制方面取得新进展。研究人员设计合成了Pd单晶八面体纳米晶和孪晶二十面体纳米晶的准模型催化体系,详细阐述了Pd纳米晶表面应力与CO2电催化还原性能之间的内在关联。该成果以Understanding of Strain Effect in Electrochemical Reduction of CO2: Using Pd Nanostructures as an Ideal Platform 为题发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2017, 56, 3594),论文的共同第一作者是博士后黄宏文、研究生贾欢欢和博士生刘钊。

近日,中国科学院大连化学物理研究所催化基础国家重点实验室包信和与汪国雄团队在二氧化碳高效电催化还原研究中取得新进展,相关结果发表在《能源和环境科学》(Energy Environ.Sci.)上。

图片 1

目前,石油、煤和天然气等传统化石能源的转化过程导致了温室气体CO2的大量排放,加剧了全球气候变暖现象。电催化还原CO2提供了一条将作为排放物的CO2高效转变为高值化学品的新途径,不仅可以在一定程度上缓解温室效应,还可以缓和全球日益增长的能源诉求。简单地说,电催化还原CO2过程是以可再生电能或富余核电作为能源,与电解水耦合从水中获取氢,在比较温和的反应条件下一步直接获得一氧化碳、碳氢化合物和甲醇等高值化学品和液体燃料。但是,该项技术的商业化进程还受限于缺乏高效的催化剂,而系统清楚地理解催化剂的构效关系是设计高效催化剂的重要前提。

二氧化碳电催化还原反应可同时实现二氧化碳的转化利用和可再生清洁电能的有效存储,利于构建可持续发展的碳资源循环利用网络。近年来,该研究团队从催化基础角度开展了有特色和深入系统的CO2电催化还原研究,在纳米Pd基催化剂、金属-氧化物界面等方面取得了一系列研究成果,显著提高了CO2电催化还原的选择性、活性和稳定性(J.Am.Chem.Soc.,Chem.Sci.,J.Am.Chem.Soc.,ACS Catal.,Angew.Chem.Int.Ed.)。

通讯员高敦峰、焦峰 记者刘万生 4月13日,中科院大连化物所催化基础国家重点实验室高敦峰、汪国雄和包信和院士等研究人员与浙江工业大学王建国教授等合作,在二氧化碳高效电催化还原研究中取得进展,发现纳米钯电极高效催化二氧化碳还原生成一氧化碳,并且其催化性能与纳米粒子尺寸有很强的依赖关系。相关结果发表在日前出版的《美国化学会志》(J. Am. Chem. Soc. 2015, 137, 4288−4291)上。

一般来说,催化剂的表面应力状态能够调制催化剂的电子结构,将对催化性能产生重要影响。但是,由于难以将催化剂的应力调控和电子结构调控孤立开来,针对表面应力结构在CO2电催化还原过程中的调控机制目前并不清楚。面对这一挑战,研究人员以Pd单晶八面体纳米晶和孪晶二十面体纳米晶作为准模型体系,在保证两者尺寸、表面晶面和表面包裹分子相同的情况下,研究了钯纳米晶表面应力与二氧化碳电催化还原性能之间的内在关联。在-0.8V时,Pd孪晶二十面体纳米晶上生成一氧化碳的法拉第效率达到91.1%,远高于Pd单晶八面体纳米晶。通过分子动力学模拟、第一性原理计算以及电化学测试,发现表面拉伸应力提升了Pd孪晶二十面体纳米晶的d带中心,从而增强了催化剂表面CO2的吸附和活化,显著提高了CO2电催化还原活性和选择性。该项结果诠释了催化剂表面结构与催化反应活性间的对应关系,对于设计高效CO2电还原催化剂提供了新的研究思路。

过渡金属-氮-碳复合材料是一类有望替代贵金属的电催化材料,该研究团队近期致力于该类材料的可控制备及其电催化性能研究(Energy Environ.Sci.,Nano Energy,ACS Catal.)。前期研究表明,过渡金属-氮-碳复合材料可将CO2电催化还原生成CO,但随着过电势增加,竞争性的析氢反应电流急剧增大,造成CO法拉第效率迅速下降,很难获得高的CO分电流密度。因此同时获得高的CO2RR电流密度和法拉第效率是过渡金属-氮-碳复合材料面临的重要挑战。

近年来,全球二氧化碳排放量的逐年增加对人们赖以生存的生态环境造成了严重威胁,因此二氧化碳的捕获、存储以及转化受到研究者的广泛关注。在二氧化碳转化方面,利用传统化学方法还原二氧化碳需要同时提供能量和氢气,而采用电催化方法还原二氧化碳,与电解水耦合从水中获取氢,可以在比较温和的反应条件一步直接获得一氧化碳、碳氢化合物和甲醇等高值化学品和液体燃料。同时,该过程与可再生能源或富余核能利用相结合,实现大规模电能存储,表现出极具潜力的应用前景,当前已成为相关领域一个重要的研究热点。

该项研究得到了中科院前沿科学重点研究项目、国家重大科学研究计划、国家自然科学基金、博士后科学基金等项目的资助。

在该研究中,该研究团队通过热解锌/镍双金属沸石咪唑类骨架材料,成功制备出配位不饱和Ni-N位点掺杂的多孔碳材料,其中单分散的Ni物种负载量最高可达5.44wt%。在该Ni-N催化剂上,CO法拉第效率在-0.53V~-1.03V宽电势区间内维持在92.0%~98.0%之间,CO电流密度随过电势增加而增加,在-1.03V达到71.5±2.9mA/cm2。表征结果和对比试验表明配位不饱和的Ni-N为活性位点;密度泛函理论计算进一步揭示在NiN2V2位上CO2RR比HER更容易发生,推测NiN2V2可能是CO2RR的活性位。因此,高载量配位不饱和Ni-N活性位同时实现了CO2RR的高电流密度和法拉第效率,打破了过渡金属-氮-碳复合材料上CO2RR选择性和反应速率的“跷跷板”效应限制。

Pd是典型的析氢反应催化剂,体相Pd电极上的CO2还原过电势高、竞争性的析氢反应造成法拉第效率低。该团队的实验研究发现,在2.4–10.3 nm范围内,Pd纳米粒子的CO2还原选择性和活性表现了明显的尺寸依赖性。在−0.89 V 时生成CO的法拉第效率从10.3 nm Pd上的5.8%增加到3.7 nm Pd上的91.2%,同时生成CO的电流密度增加了18.4倍。通过密度泛函理论计算,分析了在三种不同反应位上CO2还原和析氢反应的自由能,并建立了反应性能与粒度的关系。生成CO的转换频率与粒径呈现火山型曲线关系,这表明可以通过改变Pd纳米粒子的尺寸来调变CO2吸附、中间物种COOH*的形成以及CO*的脱附等,从而实现Pd纳米粒子从析氢催化剂到高效CO2还原催化剂的转变。

图片 2

上述研究工作得到了国家自然科学基金、国家重点研发计划、DMTO和中科院先导专项等的资助。

该研究得到了国家自然科学基金委和科技部等相关项目的资助。

Pd纳米晶及其CO2电催化还原性能

编辑:科技技术 本文来源:二氧化碳高效电催化还原研究新进展,二氧化碳

关键词: